Siddharth Institute of Engineering & Technology

2

3 4

5

6

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapur) (Accredited by NBA & Accredited by NAAC with 'A' Grade) (An ISO 9001:2008 Certified Institution) Siddharth Nagar, Narayanavanam Road, PUTTUR-517 583 **QUESTION BANK**

Subject with Code: Advanced Fluid Dynamics (19ME3102)Course & Branch: M. Tech(TE)Year & Sem : I Year & I-SemRegulation: R19

<u>UNIT-I</u>

1 Shortly discuss the following:

	(i)	Fluids	2M			
	(ii)	Fluid statistics	2M			
	(iii)	Fluid dynamics	2M			
	(iv)	Time line	2M			
	(v)	Streak line	2M			
	(vi)	Newtonian Fluids	2M			
Describe the following:						
	(i)	Bernoulli's equation	3M			
	(ii)	Three dimensional flow	3M			
	(iii)	Laminar flow	2M			
	(iv)	Viscous flow	2M			
	(v)	Steady flow	2M			
Outline the derivation of continuity equation by using integral and differential approach						
Discuss in detail about the derivation of momentum equation by using integral and						
differential approach						
Shortly discuss any three of the following:						
	(i)	Conservative body forces	3M			
	(ii)	Euler equation	3M			
	(iii)	Vorticity transport equation.	3M			
	(iv)	Strokes equation	3M			
Explain in detail about the boundary layer equation						

Dept. of Mechanical Engineering

Siaar	harth Institute of Engineering & Technology Qu	Question Bank		
7	Explain about the parallel flow in straight channel with neat sketch.	12M		
8	With a neat sketch describe the Coutte flow.	12M		
9	Discuss in detail about the strokes flow past a sphere.	12M		
10	Elucidate in detail about the strokes flow past a cylinder.	12M		
	<u>UNIT-II</u>			
1	Prove Kelvin's theorem with the help of circulation piece wise continuous function	n and 12M		
	conservative body forces definitions.			
2	Discuss in detail about the irrotational flow.	12M		
3	Outline the stream function / velocity potential approach.	12M		
4	What are the application of empirical relation to various geometries for laminar	r and 12M		
	turbulent flows and explain in detail.			
5	Explain in detail about the Reynolds's Analogy.	12M		
6	Describe in detail about the Colborn Analogy.	12M		
7	Differentiate about the parallel flow and internal flow.	12M		
8	8 Write in detail about the use of empirical correlations			
9	Discuss the various empirical equations available to predict natural convection heat transfer			
	coefficient.			
10	With a simple sketch discuss the creeping flows.	12M		
	UNIT-III			
1	a) Discuss in detail about the laminar flow.	6M		
	b) Explain in detail about the laminar boundary layers.	6M		
2	a) Provide the boundary layer equation.	3M		
	b) Explain in detail about the boundary layer equation.	9M		
3	Elucidate the mathematical anology of high Reynolds number flow near a solid boundar	ry. 12M		
4	Briefly explain the Blasius flow over a flat plate.	12M		
5	a) Discuss shortly about the wall shear stress.	6M		
	b) Discuss shortly about the boundary –layer thickness.	6M		
6	Explain about the boundary layer with non-zero pressure gradient.	12M		
7	Briefly discuss about the momentum integral equation for boundary layer.	12M		
8	a) What is meant by separation of boundary layer?	3M		

Siddh	arth Institute of Engineering & Technology	Question Bank					
9	Elucidate the Karman – Pohlhausen method for flow over a flat plate.	12M					
10	Briefly discuss about the Walz's approximation with neat sketch	12M					
<u>UNIT-IV</u>							
1	a) Define turbulent flow.	3M					
	b) Explain the characteristics of turbulent flow.	9M					
2	2 Explain briefly about the laminar turbulent transition.						
3	3 Derive the governing equation for turbulent flow.						
4	4 Derive the governing equation for shear stress models.						
5	Briefly explain about the time mean motion and fluctuations.	12M					
6	Derive the governing equation for velocity distribution.	12M					
7	Shortly discuss about the following:						
	(i) Time mean motion	3M					
	(ii) Fluctuations	3M					
	(iii) Turbulent flow	3M					
	(iv) Velocity distribution	3M					
8	Explain about the universal velocity profile on a flat plate and rectangular plate.	12M					
9	9 Describe the universal velocity distribution for circular pipes and friction factor in detail.						
10	With suitable example brief about the Laminar – turbulent transition.	12M					
	<u>UNIT-V</u>						
1	Describe the role of experiments in engineering with suitable examples.	12M					
2	2 Discuss in detail about the layout of fluid flow experiments with suitable sketch.						
3	3 Discuss about the sources of error in measurements.						
4	Explain the importance of data analysis with some application.						
5	5 Discus the design of experiments with some suitable application.						
6	6 Discuss in detail about the review of probes and transducers						
7	7 Explain the function of hot wire anemometry with neat sketch.						
8	8 Describe the working principle of Laser Doppler Velocimetry with neat sketch.						
9	Explain the working principle of Particle Image Velocimetry with neat diagram.						
10	Describe the various significant properties of fluid.						